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Abstract

Forced convection in a plane channel filled with a saturated bi-disperse porous medium, coupled with conduction in

plane slabs bounding the channel, is investigated analytically on the basis of a two-velocity, two-temperature model. It

is found that the effect of the finite thermal resistance due to the slabs is to reduce both the heat transfer to the porous

medium and the degree of local thermal non-equilibrium. An increase in value of the Péclet number leads to a decrease

in the rate of exponential decay in the downstream direction but does not affect the value of a suitably defined Nusselt

number. The dependence of Nusselt number on Biot number associated with the boundary slabs, the interphase heat

exchange parameter, the interphase thermal conductivity ratio, the interphase effective permeability ratio, and the

macroscopic void fraction, is investigated.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

There has recently been renewed interest in the prob-

lem of forced convection in a porous medium channel

because of the use of hyperporous media in the cooling

of electronic equipment. Recent surveys have been made

by Nield and Bejan [1] and by Lauriat and Ghafir [2].

With two exceptions, in each case a regular porous med-

ium was considered. The exceptions are the studies by

Nield and Kuznetsov [3] and Kuznetsov and Nield [4]

of flow in a channel occupied by a bi-dispersed porous

medium bounded by parallel plates. In the first paper
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fully developed convection was studied for the case of

uniform temperature or uniform heat flux boundaries.

In the second paper thermally developing convection

for uniform temperature boundaries was treated.

A bi-dispersed porous medium (BDPM), as defined

in [5], is composed of clusters of large particles that

are agglomerations of small particles (Fig. 1a). Thus

there are macro-pores between the clusters and micro-

pores within them. A BDPM may thus be looked at as

a standard porous medium in which the solid phase is re-

placed by another porous medium, whose temperature

may be denoted by Tp if local thermal equilibrium is

assumed within each cluster. We can then talk about

the f-phase (the macro-pores) and the p-phase (the

remainder of the structure). An alternative way of look-

ing at the structure is to regard it as a porous medium in

which fractures or tunnels have been introduced. One
ed.
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Fig. 1. (a) Sketch of a bi-disperse porous medium. (b)

Definition sketch.
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can then think of the f-phase as being a �fracture phase�
and the p-phase as being a �porous phase�.

Nield and Kuznetsov [3] modeled the steady-state

heat transfer by a pair of coupled equations for Tf and

Tp (see Eqs. (8) and (9)). They also introduced a coupled

pair of momentum equations involving the velocities in

the two phases, and showed that the effect of that cou-

pling was simply to modify the permeabilities in the

two phases.

In this paper the analysis presented in [3] is extended

to a conjugate problem, involving the coupling of con-

vection in the channel with conduction in adjacent solid

slabs. The analysis is similar to that employed by Nield

and Kuznetsov [6], and the present paper may be re-

garded as an extension of [6] to a two velocity (as well

as two temperature) model.
2. Analysis

The geometry of the problem is illustrated in Fig. 1b.

We consider a porous medium channel of half width H

bounded on each side by a boundary solid slab of thick-

ness H 0. We consider the case where the outside of the

boundary slabs is maintained at a uniform constant tem-

perature T �
0 and we neglect axial conduction both in the

bi-disperse porous medium and in the boundary slabs.

The neglect of axial conduction within the porous med-

ium is justified if the Péclet number is sufficiently large.

The neglect of conduction in the slabs is consistent with
the neglect of axial conduction in the porous medium,

together with the uniform temperature imposed on the

outside.

When the axial heat flux is zero, the temperature T 0�

in the solid slabs is independent of the axial coordinate

x�. (We use asterisks to denote dimensional variables.)

If T �
0 is the constant outside temperature, that at

y� = H + H 0, then the solution of the heat conduction

equation is

T 0� ¼ T �
0 þ bðH þ H 0 � y�Þ; ð1Þ

where b is constant. The temperature at the channel

wall, at y� =H, is thus T �
w ¼ T �

0 þ bH 0, and the wall heat

flux is k 0b, where k 0 is the slab conductivity. Let T �
f , T

�
p,

be respectively the temperature in the f-, p- phase of the

porous medium, and / be the macropore volume frac-

tion. Equating REV averages of the temperature and

heat flux to the wall values we have, at y� = H,

/T �
f þ ð1� /ÞT �

p ¼ T �
0 þ bH 0; ð2Þ

/kfðoT �
f =oy

�Þ þ ð1� /ÞkpðoT �
p=oy

�Þ ¼ �k0b; ð3Þ

where kf and kp are the f-phase and p- phase conduc-

tivities, respectively.

Writing

h�f ¼ T �
f � T �

0; h�p ¼ T �
p � T �

0; ð4Þ

and eliminating b, we have the boundary condition

/kfðoh�f =oy�Þ þ ð1� /Þkpðoh�p=oy�Þ
¼ �ðk0=H 0Þð/h�f þ ð1� /Þh�pÞ; at y� ¼ H : ð5Þ

Because the differential equations system, Eqs. (10)

and (11) below, is of fourth order, we need two bound-

ary conditions at y� = H. Following Nield and Kuz-

netsov [6], we postulate a uniformity principle that

requires that the boundary condition holds for all values

of the macroscopic fluid volume fraction /. Accord-

ingly, we have

kfðoh�f =oy�Þ ¼ �ðk0=H 0Þh�f and

kpðoh�p=oy�Þ ¼ �ðk0=H 0Þh�p at y� ¼ H : ð6Þ

We also have the symmetry conditions

oh�f =oy
� ¼ 0; oh�p=oy

� ¼ 0 at y� ¼ 0: ð7Þ

We assume that T �
p and T �

f are governed by the steady

state heat transfer (energy) equations

/r � ðkfrT �
f Þ þ hfpðT �

p � T �
f Þ ¼ qcPv�f � rT �

f ð8Þ

ð1� /Þr � ðkprT �
pÞ þ hfpðT �

f � T �
pÞ ¼ qcPv�p � rT �

p ð9Þ

Here / is the volume fraction of the f-phase, v�f and v�p
are the Darcy velocities in the two phases, kf and kp are

the effective thermal conductivities of the two phases

(since the f-phase is entirely fluid that means that kf is

actually the thermal conductivity of the fluid), qcP is
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the heat capacity per unit volume of the fluid, and hfp is

the coefficient for heat transfer between the two phases

(with the specific area incorporated into the coefficient).

The reader will note that the addition of Eqs. (8) and

(9) produces an equation which is the standard thermal

energy equation based on an REV approach.

We now consider the case where the Darcy velocity is

axial and has the uniform values U �
f ;U

�
p in the respective

f-, p-phases.

We write

x ¼ x�=PeH ; y ¼ y�=H ; hf ¼ h�f =T
�
ref ;

hp ¼ h�p=T
�
ref ; ð10Þ

ûf ¼ u�f =U
�
m; ûp ¼ u�p=U

�
m; U r ¼ U �

p=U
�
f : ð11Þ

where T �
ref is any convenient temperature scale and

U �
m ¼ /U �

f þ ð1� /ÞU �
p; ð12Þ

while Pe is the Péclet number defined as

Pe ¼ U �
mHðqcPÞf=keff : ð13Þ

It will be noted that that U �
m is equal to the volumet-

ric flux density through the BDPM (an overall Darcy

number) and is thus an easily measured physical

quantity.

It will also be noted that Pe enters into the scaling of

the axial coordinate, but plays no further role.

For convenience, we perform the subsequent algebra

in terms of the parameters

N f ¼
/

/þ ð1� /Þkr
; Np ¼

ð1� /Þkr
/þ ð1� /Þkr

; Nh ¼ g;

ð14Þ
where g is the interface heat exchange parameter and kr
is the conductivity defined by

g ¼ hfpH 2=keff ; kr ¼ kp=kf ;

keff ¼ /kf þ ð1� /Þkp: ð15Þ

Eqs. (8) and (9) now take the form

½N fo
2=oy2 � Nh � ûfo=ox�hf þ Nhhp ¼ 0 ð16Þ

Nhhf þ ½Npo
2=oy2 � Nh � ûpo=ox�hp ¼ 0: ð17Þ

The boundary conditions (6) and (7) become

ohf=oy þ Lfhf ¼ 0; ohp=oy þ Lphp ¼ 0 at y ¼ 1;

ð18Þ

ohf=oy ¼ 0; ohp=oy ¼ 0 at y ¼ 0: ð19Þ
Here Lf and Lp are defined by

Lf ¼ Bi½/þ ð1� /Þkr�; Lp ¼ Bi½/þ ð1� /Þkr�=kr;
ð20Þ

where in turn the Biot number Bi is defined as

Bi ¼ k0H=keffH 0: ð21Þ
The homogeneous system of equations (16)–(19) can

be solved using the method of separation of variables.

Letting

hf ¼ HfðyÞekx; hp ¼ HpðyÞekx ð22Þ

and denoting d/dy by D, we get

ðN fD2 � Nh � ûfkÞHf þ NhHp ¼ 0; ð23Þ

ðNpD2 � Nh � ûpkÞHp þ NhHf ¼ 0; ð24Þ

DHf þ LfHf ¼ 0; DHp þ LpHp ¼ 0 at y ¼ 1; ð25Þ

DHf ¼ 0; DHp ¼ 0 at y ¼ 0: ð26Þ

Eliminating Hp, we get

fðN fD2 � Nh � ûfkÞðNpD2 � Nh � ûpkÞ � N 2
hgHf ¼ 0

ð27Þ

DHf þ LfHf ¼ 0;

ðDþ LpÞðN fD2 � Nh � ûfkÞHf ¼ 0 at y ¼ 1: ð28Þ

The solution of Eq. (27) subject to the symmetry

requirement (26) is

Hf ¼ A cos s1y þ B cosh s2y; ð29Þ

where A and B are constants and

as41 þ bs21 þ c ¼ 0; as42 � bs22 þ c ¼ 0 ð30Þ

where

a ¼ N fNp; ð31Þ

b ¼ NhðN f þ NpÞ þ ðN f ûp þ NpûfÞk; ð32Þ

c ¼ Nhðûf þ ûpÞkþ ûf ûpk
2: ð33Þ

We require that s1 and s2 be real and positive and k
be real and negative. Thus

s1 ¼ f½�bþ ðb2 � 4acÞ1=2�=2ag1=2; ð34Þ

s2 ¼ f½bþ ðb2 � 4acÞ1=2�=2ag1=2; ð35Þ

Substituting into Eq. (27), and eliminating A and B,

we get the eigenvalue equation for k, which can be writ-

ten in the form

ðN fs21 þ Nh þ ûfkÞðs1 tan s1 � LpÞðs2 tanh s2 þ LfÞ

¼ ð�N fs22 þ Nh þ ûfkÞðs2 tanh s2 þ LpÞðs1 tan s1 � LfÞ

ð36Þ

The significant eigenvalue is the negative root of

smallest magnitude. (The set of equations (31)–(36)

can be solved iteratively to compute this eigenvalue.)

The corresponding values of s1 and s2 are real. The

eigenvector is obtained from



Table 1

Values of Nusselt number versus Biot number, calculated from

Eqs. (49) and (50), for the case of thermal equilibrium

(reproduced from [6])

Bi l Nu

0 0 0

0.01 0.09983 0.01993

0.05 0.22176 0.09835

0.1 0.31105 0.1935

0.5 0.65327 0.8535

1 0.86033 1.4803

5 1.31384 3.4524

10 1.42887 4.0833

50 1.54001 4.7433

100 1.55525 4.8376

500 1.56766 4.9151

1000 1.56923 4.9250

1 1.57080 (p/2) 4.9348 (p2/2)
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B=A ¼ ðs1 sin s1 � Lf cos s1Þ=ðs2 sinh s2 þ Lf cosh s2Þ;
ð37Þ

and from Eq. (23) one obtains

Hp ¼ N�1
h fðN fs21 þ Nh þ kÞA cos s1y

þ ð�N fs22 þ Nh þ kÞB cosh s2yg: ð38Þ

With the temperature distribution completely found,

one can then compute the heat transfer. Matching the

heat flux at the channel wall gives

q00 ¼ /kfðoT �
f =oy

�Þy�¼H þ ð1� /ÞkpðoT �
p=oy

�Þy�¼H ð39Þ

The Nusselt number is defined by

Nu ¼ 2Hh=keff ; ð40Þ

where, in turn,

h ¼ q00=ðT �
w � T �

b;mÞ ð41Þ

where the mean bulk temperature is defined by

T �
b;m ¼ 1

U �
mH

Z H

0

u�f/T �
f þ ð1� /ÞT �

pgdy�

¼ 1

H

Z H

0

f/ûfT �
f þ ð1� /ÞûpT �

pgdy�: ð42Þ

The calculation of Nu is now straightforward. The

factor Tref ekx that appears in both q00 and T �
b;m � T �

0

now cancels in the calculation. One can use Eq. (37)

and the relations

keff ¼ /kf þ ð1� /Þkp ¼ U �
mHðqcPÞfðN f þ NpÞ; ð43Þ

/kf ¼ U �
mHðqcPÞfN f ; ð44Þ

ð1� /Þkp ¼ U �
mHðqcPÞfNp; ð45Þ

to obtain the formula for the Nusselt number in the

form,
Nu ¼ ðLfC2 þ s2S2Þs1S1½N f þ NpM1� þ ðLfC1 � s1S1Þs2S2½N f þ NpM2�
N f þ Np

2

� �
ðLfC2 þ s2S2ÞS1

s1
/ûf þ ð1� /ÞûpM1

� �
� ðLfC1 � s1S1ÞS2

s2
/ûf þ ð1� /ÞûpM2

� �� � ; ð46Þ
where C1 ¼ cos s1, C2 ¼ cosh s2, S1 ¼ sin s1, S2 ¼ sinh s2,
and

M1 ¼ ðN fs21 þ Nh þ kÞ=Nh;

M2 ¼ ð�N fs22 þ Nh þ kÞ=Nh: ð47Þ

The solution for the case kf = kp and U �
f ¼ U �

p is

especially simple. One finds that in this case

Hf ¼ A cosly; ð48Þ

and

Nu ¼ 2l2; ð49Þ
where l is the smallest positive root of the equation

x tan x ¼ Bi: ð50Þ

Some results based on equations (49) and (50) are

given in Table 1.

For the general case, we present our results in terms

of the independent parameters /, Bi, g, kr, and Ur. To

this end, we employ the expressions

ûf ¼ 1=½/þ ð1� /ÞU r�; ð51Þ

ûp ¼ U r=½/þ ð1� /ÞU r�: ð52Þ

The eigenfunction solution so far obtained for

our parabolic differential equation system contains a

multiplicative factor whose determination requires that

an upstream (‘‘initial’’) condition be specified. The

eigenfunction is such that its shape (expressed by the
dependence on y) does not evolve with distance down-

stream but the amplitude (expressed by the dependence

on x) decays exponentially as x increases.
3. Results and discussion

We tested our computer code for the evaluation of

the eigenvalue k and then the Nusselt number Nu by

comparing our results, for the case of very small / and

using a large value of Ur (for test purposes only), with

known results reported by Nield and Kuznetsov [6],
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and in particular with those listed in Table 1. We can in

fact regard our present paper as an extension, to a two-

velocity model, of [6] with Ur, representing a ratio of

effective permeabilities in the two phases, as a new

parameter to be varied. Thus from [6] we already know

that Nu invariably decreases as Bi increases. We also

know that Nu increases/decreases as g decreases from

large values (the case of local thermal equilibrium) to
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Fig. 2. Plots of Nusselt number versus interphase heat

exchange parameter for various values of the velocity ratio

(case / = 0.4, kr = 0.1): (a) Bi = 10, (b) Bi = 1 and (c) Bi = 0.1.
smaller values according to whether kr is less/greater

than unity. Also, we expect that Nu will also be generally

less at intermediate values of / (the f-phase volume frac-

tion here, the porosity in [6]) than at the extreme values

/ very small or close to unity with one exception (for

small / when kr is less than unity). In general, Nu varies

little with / in the range [0.25, 0.5] relevant for a realistic

bi-disperse porous medium. In a representative case we
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Fig. 3. Plots of Nusselt number versus interphase heat

exchange parameter for various values of the velocity ratio

(case / = 0.4, kr = 1): (a) Bi = 10, (b) Bi = 1 and (c) Bi = 0.1.
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found that Nu increased by only 5% as / increased from

0.25 to 0.5.

Accordingly, we have chosen to present figures in

each of which curves are plotted for various values of

Ur, the individual curves being of Nu plotted versus g
(strictly speaking log g) for a representative value (0.4)

of /. The figures correspond to various values of kr
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Fig. 4. Plots of Nusselt number versus interphase heat

exchange parameter for various values of the velocity ratio

(case / = 0.4, kr = 10): (a) Bi = 10, (b) Bi = 1 and (c) Bi = 0.1.
(kr = 0.1 in Fig. 2, kr = 1.0 in Fig. 3, kr = 10 in Fig. 4)

and Bi (for (a) Bi = 10, (b) Bi = 1, (c) Bi = 0.1 in each fig-

ure). The values Ur = 1, 0.1 and 0.01 are used in the pres-

entation. The first value is probably not realistic

physically, and should be regarded as a limiting case.

We also point out that small values of g are not physi-

cally realistic, and so we were not concerned when we

ran into numerical difficulties when we attempted to de-

crease the value of g. (This is the reason why some of the

curves presented stop at an arbitrary value of g.)
The figures show an interesting variety of behavior.

As expected, a major feature is the decrease in Nu as

Bi decreases, and the above mentioned variation with

kr of the the direction of variation of Nu with g is gener-

ally confirmed (but Fig. 2a shows an exception). The

value of Nu is especially sensitive to the value of g when

kr is small. In most cases Nu increases as Ur decreases,

but the cases shown in Fig. 2b and c are exceptions. Also

in most cases there is a substantial jump as Ur changes

from 1.0 to 0.1, but a much smaller jump as it changes

from 0.1 to 0.01 (and additional calculations showed

that there was then little further change as Ur decreased

further). A rather dramatic change is shown in Fig. 2a,

where the direction of variation of Nu with g changes

as Ur changes.
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